Frasi di Duncan Gregory

Duncan Farquharson Gregory è stato un matematico britannico di cui un trisavolo era James Gregory.

Nel 1833 entra nel Trinity College dell'Università di Cambridge. I suoi interessi si rivolgono a matematica, chimica, fisica, astronomia, botanica. Ottiene un BA nel 1837 e un MA nel 1841 e nel 1840 diventa assistente tutore del Trinity College e si dedica solo alla matematica. È il primo editor del Cambridge Mathematical Journal. La sua cattiva salute lo obbliga a tornare nella casa di famiglia ad Edimburgo e qui muore trentenne.

Il suo principale contributo alla matematica riguarda la definizione delle operazioni tra le combinazioni in senso algebrico. Il suo lavoro porta molto avanti le vedute di

George Peacock e influenzerà gli studi di George Boole.

Scrive inoltre due testi che hanno avuto notevole influenza: un trattato di calcolo differenziale e integrale che contribuì alla adozione in Inghilterra del calcolo infinitesimale, secondo gli auspici della Analytical Society di Peacock, John Herschel e Charles Babbage. Il secondo, sulle applicazioni geometriche dell'analisi, fu completato e pubblicato dopo la sua morte. Wikipedia  

✵ 13. Aprile 1813 – 23. Febbraio 1844
Duncan Gregory photo
Duncan Gregory: 4   frasi 0   Mi piace

Duncan Gregory: Frasi in inglese

“There are a number of theorems in ordinary algebra, which, though apparently proved to be true only for symbols representing numbers, admit of a much more extended application. Such theorems depend only on the laws of combination to which the symbols are subject, and are therefore true for all symbols, whatever their nature may be, which are subject to the same laws of combination. The laws with which we have here concern are few in number, and may be stated in the following manner. Let a, b represent two operations, u, v two subjects on which they operate, then the laws are
(1) ab(u) = ba (u),
(2) a(u + v) = a (u) + a (v),
(3) am. an. u = am + n. u.
The first of these laws is called the commutative law, and symbols which are subject to it are called commutative symbols. The second law is called distributive, and the symbols subject to it distributive symbols. The third law is not so much a law of combination of the operation denoted by a, but rather of the operation performed on a, which is indicated by the index affixed to a. It may be conveniently called the law of repetition, since the most obvious and important case of it is that in which m and n are integers, and am therefore indicates the repetition m times of the operation a.”

That these are the laws employed in the demonstration of the principal theorems in Algebra, a slight examination of the processes will easily shew ; but they are not confined to symbols of numbers ; they apply also to the symbol used to denote differentiation.
p. 237 http://books.google.com/books?id=8lQ7AQAAIAAJ&pg=PA237; Highlighted section cited in: George Boole " Mr Boole on a General Method in Analysis http://books.google.com/books?pg=PA225-IA15&id=aGwOAAAAIAAJ&hl," Philosophical Transactions, Vol. 134 (1844), p. 225; Other section (partly) cited in: James Gasser (2000) A Boole Anthology: Recent and Classical Studies in the Logic of George Boole,, p. 52
Examples of the processes of the differential and integral calculus, (1841)

“It has always appeared to me that we sacrifice many of the advantages and more of the pleasures of studying any science by omitting all reference to the history of its progress: I have therefore occasionally introduced historical notices of those problems which are interesting either from the nature of the questions involved, or from their bearing on the history of the Calculus. …[T]hese digressions may serve to relieve the dryness of a mere collection of Examples.”

p. vi http://books.google.com/books?id=h7JT-QDuAHoC&pg=PR6, as cited in: Patricia R. Allaire and Robert E. Bradley. " Symbolical algebra as a foundation for calculus: DF Gregory's contribution http://poncelet.math.nthu.edu.tw/disk5/js/history/gregory.pdf." Historia Mathematica 29.4 (2002): p. 409.
Examples of the processes of the differential and integral calculus, (1841)

Autori simili

Lewis Carroll photo
Lewis Carroll 62
scrittore, matematico e fotografo britannico
Thomas Hardy photo
Thomas Hardy 39
poeta e scrittore britannico
John Stuart Mill photo
John Stuart Mill 51
filosofo e economista britannico
Walter Scott photo
Walter Scott 12
scrittore e poeta britannico
Charles Spurgeon photo
Charles Spurgeon 2
predicatore britannico
Robert Browning photo
Robert Browning 3
poeta e drammaturgo britannico
John Ruskin photo
John Ruskin 14
scrittore, pittore e poeta britannico
Thomas Carlyle photo
Thomas Carlyle 38
storico, saggista e filosofo scozzese
Charles Dickens photo
Charles Dickens 105
scrittore, giornalista e reporter di viaggio britannico
George Eliot photo
George Eliot 21
scrittrice britannica