# Frasi di John Von Neumann

## John Von Neumann

**Data di nascita:** 28. Dicembre 1903**Data di morte:** 8. Febbraio 1957

John von Neumann, nato János Lajos Neumann: IPA: [ˈjaːnoʃ ˈlɒjoʃ ˈnojmɒn [in effetti: Margittai Neumann János Lajos] , è stato un matematico, fisico e informatico ungherese naturalizzato statunitense.

Generalmente considerato come uno dei più grandi matematici della storia moderna oltre ad essere una delle personalità scientifiche preminenti del XX secolo, a lui si devono contributi fondamentali in numerosi campi come la teoria degli insiemi, analisi funzionale, topologia, fisica quantistica, economia, informatica, teoria dei giochi, fluidodinamica e in molti altri settori della matematica.

### Autori simili

### Frasi John Von Neumann

### „In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage.“

— John Von Neumann

Context: You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage.
Suggesting to Claude Shannon a name for his new uncertainty function, as quoted in Scientific American Vol. 225 No. 3, (1971), p. 180.

### „Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.“

— John Von Neumann

Context: Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.
On mistaking pseudorandom number generators for being truly "random" — this quote is often erroneously interpreted to mean that von Neumann was against the use of pseudorandom numbers, when in reality he was cautioning about misunderstanding their true nature while advocating their use. From "Various techniques used in connection with random digits" by John von Neumann in Monte Carlo Method (1951) edited by A.S. Householder, G.E. Forsythe, and H.H. Germond <!-- National Bureau of Standards Applied Mathematics Series, 12 (Washington, D.C.: U.S. Government Printing Office, 1951): 36-38. -->

### „A large part of mathematics which becomes useful developed with absolutely no desire to be useful, and in a situation where nobody could possibly know in what area it would become useful; and there were no general indications that it ever would be so.“

— John Von Neumann

Context: A large part of mathematics which becomes useful developed with absolutely no desire to be useful, and in a situation where nobody could possibly know in what area it would become useful; and there were no general indications that it ever would be so. By and large it is uniformly true in mathematics that there is a time lapse between a mathematical discovery and the moment when it is useful; and that this lapse of time can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful.
"The Role of Mathematics in the Sciences and in Society" (1954) an address to Princeton alumni, published in John von Neumann : Collected Works (1963) edited by A. H. Taub <!-- Macmillan, New York -->; also quoted in Out of the Mouths of Mathematicians : A Quotation Book for Philomaths (1993) by R. Schmalz

### „I think that it is a relatively good approximation to truth — which is much too complicated to allow anything but approximations — that mathematical ideas originate in empirics.“

— John Von Neumann

Context: I think that it is a relatively good approximation to truth — which is much too complicated to allow anything but approximations — that mathematical ideas originate in empirics. But, once they are conceived, the subject begins to live a peculiar life of its own and is … governed by almost entirely aesthetical motivations. In other words, at a great distance from its empirical source, or after much "abstract" inbreeding, a mathematical subject is in danger of degeneration. Whenever this stage is reached the only remedy seems to me to be the rejuvenating return to the source: the reinjection of more or less directly empirical ideas.
"The Mathematician", in The Works of the Mind (1947) edited by R. B. Heywood, University of Chicago Press, Chicago

### „If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.“

— John Von Neumann

Remark made by von Neumann as keynote speaker at the first national meeting of the Association for Computing Machinery in 1947, as mentioned by Franz L. Alt at the end of "Archaeology of computers: Reminiscences, 1945--1947", Communications of the ACM, volume 15, issue 7, July 1972, special issue: Twenty-fifth anniversary of the Association for Computing Machinery, p. 694.

### „Young man, in mathematics you don't understand things. You just get used to them.“

— John Von Neumann

Reply, according to Dr. Felix T. Smith of Stanford Research Institute, to a physicist friend who had said "I'm afraid I don't understand the method of characteristics," as quoted in The Dancing Wu Li Masters: An Overview of the New Physics (1979) by Gary Zukav, Bantam Books, p. 208, footnote.

### „When we talk mathematics, we may be discussing a secondary language built on the primary language of the nervous system.“

— John Von Neumann

As quoted in John von Neumann, 1903-1957 (1958) by John C. Oxtoby and B. J. Pettis, p. 128

### „You don't have to be responsible for the world that you're in.“

— John Von Neumann

Advice given by von Neumann to Richard Feynman as quoted in "Los Alamos from Below" in Surely You're Joking, Mr. Feynman! (1985).

### „The goys have proven the following theorem…“

— John Von Neumann

Statement at the start of a classroom lecture, as quoted in 1,911 Best Things Anyone Ever Said (1988) by Robert Byrne.

### „The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.“

— John Von Neumann

"Method in the Physical Sciences", in The Unity of Knowledge (1955), ed. L. G. Leary (Doubleday & Co., New York), p. 157

### „If one has really technically penetrated a subject, things that previously seemed in complete contrast, might be purely mathematical transformations of each other.“

— John Von Neumann

As quoted in Proportions, Prices, and Planning (1970) by András Bródy

### „You wake me up early in the morning to tell me that I'm right? Please wait until I'm wrong.“

— John Von Neumann

As quoted by Jacob Bronowski in The Ascent of Man TV series

### „There probably is a God. Many things are easier to explain if there is than if there isn't.“

— John Von Neumann

As quoted in John Von Neumann : The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence and Much More (1992) by Norman Macrae, p. 379

### „It is exceptional that one should be able to acquire the understanding of a process without having previously acquired a deep familiarity with running it, with using it, before one has assimilated it in an instinctive and empirical way… Thus any discussion of the nature of intellectual effort in any field is difficult, unless it presupposes an easy, routine familiarity with that field. In mathematics this limitation becomes very severe.“

— John Von Neumann

As quoted in "The Mathematician" in The World of Mathematics (1956), by James Roy Newman