Frasi di John Wallis
pagina 2

John Wallis è stato un presbitero e matematico inglese.

Wallis ha contribuito allo sviluppo del calcolo infinitesimale. Tra il 1643 e il 1689 è stato capo crittografo del Parlamento del Regno Unito e successivamente della corte reale. A lui si attribuisce anche l'introduzione del simbolo ∞ che denota il concetto matematico di infinito. Wikipedia  

✵ 23. Novembre 1616 – 28. Ottobre 1703
John Wallis photo
John Wallis: 34   frasi 0   Mi piace

John Wallis: Frasi in inglese

“Let as many Numbers, as you please, be proposed to be Combined: Suppose Five, which we will call a b c d e. Put, in so many Lines, Numbers, in duple proportion, beginning with 1. The Sum (31) is the Number of Sumptions, or Elections; wherein, one or more of them, may several ways be taken. Hence subduct (5) the Number of the Numbers proposed; because each of them may once be taken singly. And the Remainder (26) shews how many ways they may be taken in Combination; (namely, Two or more at once.) And, consequently, how many Products may be had by the Multiplication of any two or more of them so taken. But the same Sum (31) without such Subduction, shews how many Aliquot Parts there are in the greatest of those Products, (that is, in the Number made by the continual Multiplication of all the Numbers proposed,) a b c d e.”

For every one of those Sumptions, are Aliquot Parts of a b c d e, except the last, (which is the whole,) and instead thereof, 1 is also an Aliquot Part; which makes the number of Aliquot Parts, the same with the Number of Sumptions. Only here is to be understood, (which the Rule should have intimated;) that, all the Numbers proposed, are to be Prime Numbers, and each distinct from the other. For if any of them be Compound Numbers, or any Two of them be the same, the Rule for Aliquot Parts will not hold.
Origine: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.I Of the variety of Elections, or Choice, in taking or leaving One or more, out of a certain Number of things proposed.

“This method of mine takes its beginnings where Cavalieri ends his Method of indivisibles.”

...for as his was the Geometry of indivisibles, so I have chosen to call my method the Arithmetic of infinitesimals.
Arithmetica Infinitorum (1656)

Autori simili

Cartesio photo
Cartesio 46
filosofo e matematico francese
Isaac Newton photo
Isaac Newton 18
matematico, fisico, filosofo naturale, astronomo, teologo e…
Gottfried Wilhelm von Leibniz photo
Gottfried Wilhelm von Leibniz 29
matematico e filosofo tedesco
Alexander Pope photo
Alexander Pope 36
poeta inglese
Francesco Bacone photo
Francesco Bacone 39
filosofo, politico e giurista inglese
John Donne photo
John Donne 10
poeta e religioso inglese
Blaise Pascal photo
Blaise Pascal 139
matematico, fisico, filosofo e teologo francese
Jeremy Bentham photo
Jeremy Bentham 13
filosofo e giurista inglese
William Shakespeare photo
William Shakespeare 291
poeta inglese del XVI secolo
John Milton photo
John Milton 35
scrittore e poeta inglese