“Tra i numeri primi ce ne sono alcuni ancora più speciali. I matematici li chiamano primi gemelli: sono coppie di numeri primi che se ne stanno vicini, anzi quasi vicini, perché fra di loro vi è sempre un numero pari che gli impedisce di toccarsi per davvero. Numeri come l'11 e il 13, come il 17 e il 19, il 41 e il 43. Se si ha la pazienza di andare avanti a contare, si scopre che queste coppie via via si diradano. Ci si imbatte in numeri primi sempre più isolati, smarriti in quello spazio silenzioso e cadenzato fatto solo di cifre e si avverte il presentimento angosciante che le coppie incontrate fino a lì fossero un fatto accidentale, che il vero destino sia quello di rimanere soli. Poi, proprio quando ci si sta per arrendere, quando non si ha più voglia di contare, ecco che ci si imbatte in altri due gemelli, avvinghiati stretti l'uno all'altro. Tra i matematici è convinzione comune che per quanto si possa andare avanti, ve ne saranno sempre altri due, anche se nessuno può dire dove, finché non li si scopre.”

La solitudine dei numeri primi

Estratto da Wikiquote. Ultimo aggiornamento 28 Gennaio 2024. Storia

Citazioni simili

Paolo Giordano photo

“I numeri primi sono ciò che rimane una volta eliminati tutti gli schemi: penso che i numeri primi siano come la vita. Sono molto logici ma non si riesce mai a scoprirne le regole, anche se si passa tutto il tempo a pensarci su.”

The Curious Incident of the Dog in the Night-Time
Lo strano caso del cane ucciso a mezzanotte
Variante: I numeri primi sono ciò che rimane una volta eliminati tutti gli schemi: penso che i numeri primi siano come la vita. Sono molto logici ma non si riesce mai a scoprirne le regole, anche se si passa tutto il tempo a pensarci su

Marcus du Sautoy photo

“Sebbene i numeri primi […] trascendano le barriere culturali, molta matematica è creativa ed è un prodotto della psiche umana.”

Marcus du Sautoy (1965) matematico inglese

L'enigma dei numeri primi. L'ipotesi di Riemann, il più grande mistero della matematica

Plutarco photo
Marcus du Sautoy photo

“I numeri primi sono come le note di una scala musicale, e ciascuna cultura ha scelto di suonare queste note nel proprio modo specifico.”

Marcus du Sautoy (1965) matematico inglese

L'enigma dei numeri primi. L'ipotesi di Riemann, il più grande mistero della matematica

Peter Høeg photo

“Sai cosa c'è alla base della matematica?» dico, «Alla base della matematica ci sono i numeri. Se qualcuno mi chiedesse che cosa mi rende davvero felice, io risponderei: i numeri. La neve, il ghiaccio e i numeri. E sai perché?»
Spacca le chele con uno schiaccianoci e ne estrae la polpa con una pinzetta curva.
«Perché il sistema matematico è come la vita umana. Per cominciare ci sono i numeri naturali. Sono quelli interi e positivi. I numeri del bambino. Ma la coscienza umana si espande. Il bambino scopre il desiderio, e sai qual è l'espressione matematica del desiderio?»
Versa nella zuppa la panna e alcune gocce di succo d'arancia.
«Sono i numeri negativi. Quelli con cui si dà forma all'impressione che manchi qualcosa. Ma la coscienza si espande ancora, e cresce, e il bambino scopre gli spazi intermedi. Fra le pietre, fra le parti di muschio sulle pietre, fra le persone. E tra i numeri. Sai questo a cosa porta? Alle frazioni. I numeri interi più le frazioni danno i numeri razionali. Ma la coscienza non si ferma lì. Vuole superare la ragione. Aggiunge un'operazione assurda come la radice quadrata. E ottiene i numeri irrazionali».
Scalda il pane nel forno e mette il pepe in un macinino.
«È una sorta di follia. Perché i numeri irrazionali sono infiniti. Non possono essere scritti. Spingono la coscienza nell'infinito. E addizionando i numeri irrazionali ai numeri razionali si ottengono i numeri reali».
Sono finita al centro della stanza per trovare posto. È raro avere la possibilità di chiarirsi con un'altra persona. Di norma bisogna combattere per avere la parola. Questo per me è molto importante.
«Non finisce. Non finisce mai. Perché ora, su due piedi, espandiamo i numeri reali con quelli immaginari, radici quadrate dei numeri negativi. Sono numeri che non possiamo figurarci, numeri che la coscienza normale non può comprendere. E quando aggiungiamo i numeri immaginari ai numeri reali abbiamo i sistemi numerici complessi. Il primo sistema numerico all'interno del quale è possibile dare una spiegazione soddisfacente della formazione dei cristalli di ghiaccio. È come un grande paesaggio aperto. Gli orizzonti. Ci si avvicina a essi e loro continuano a spostarsi. È la Groenlandia, ciò di cui non posso fare a meno! È per questo che non voglio essere rinchiusa.”

Peter Høeg (1957) scrittore danese

da Il senso di Smilla per la neve

Argomenti correlati